53 research outputs found

    Antiphase OH and OI Airglow Emissions Induced By a Short-Period Ducted Gravity Wave

    Get PDF
    Numerical simulation of a ducted gravity wave event suggests that OH (8,3) and O(1S) 557.7 nm airglow emissions layers may exhibit opposite-phase intensities when perturbed by a short-period wave undergoing vertical reflection. This effect arises due to the time and temperature dependance of the OH excitation reaction, coupled with the linear polarization properties of vertically-standing waves

    Breaking of Thunderstorm-Generated Gravity Waves as a Source of Short-Period Ducted Waves at Mesopause Altitudes

    Get PDF
    Numerical simulation results indicate that the breaking of atmospheric gravity waves generated by tropospheric convection can excite short-period secondary waves, which are trapped in the lower thermospheric duct and which closely resemble quasi-monochromatic structures commonly observed in airglow imaging experiments

    Self-Accleration and Instability of Gravity Wave Packets: 1. Effects of Temporal Localization

    Get PDF
    An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling of the vertical propagation of the GW packet and accompanying two- and three-dimensional (2-D and 3-D) instabilities of the superposed GW and mean motion field. The altitudes at which these effects occur depend on the initial GW amplitude, intrinsic frequency, and degree of localization in time and altitude. Larger amplitudes and higher intrinsic frequencies yield strong self-acceleration effects at lower altitudes, while smaller amplitudes yield similar effects at higher altitudes, provided the Reynolds number, Re, is sufficiently large. Three-dimensional instabilities follow 2-D “self-acceleration instability” for sufficiently high Re. GW packets can also exhibit self-acceleration dynamics at more than one altitude because of continued growth of the GW packet leading edge above the previous self-acceleration event. --From the publisher\u27s website

    Die Ablösung der Grundlasten im Kanton Freiburg im 19. Jahrhundert

    Get PDF
    [1] Short-period, small-scale gravity waves are frequently observed in nighttime airglow imaging experiments. These waves are often found to be ducted and may be confined to a thin region of altitude in the mesosphere or lower thermosphere. An apparent paradox of high-altitude ducted waves is the nature of the source; it is necessary that a ducted wave be excited in situ or have been able to tunnel into the duct from another atmospheric region. In this paper, analytical and numerical solutions are presented for simple thermally ducted gravity waves that are Doppler-shifted by constant background winds. Using a continuous analytical model, duct dispersion properties are calculated for three case studies. Using a fully nonlinear numerical model, several scenarios are explored by which a tropospheric source can excite these thermally ducted wave modes. First, we validate the analytical and numerical models for the classical case of linear wave tunneling. Second, we examine the nonlinear excitation of ducted waves due to resonant wave self-interactions associated with realistic propagation and small-scale wavebreaking, for propagation in the same direction as the wind flow. Third, we consider the case of ducted wave excitation and propagation opposite to the direction to wind flow. Specifically, where horizontal group and phase velocities exhibit opposite sign in the ground-relative frame. The results suggest that ducted waves of very short period can be excited in the lower thermosphere by tropospheric sources, via simple linear and nonlinear processes. These excitation mechanisms are likely to be robust for a range of realistic thermal and thermal-Doppler ducts. Citation: Snively, J. B., and V. P. Pasko (2008), Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources

    Doppler Ducting of Short-Period Gravity Waves by Midaltitude Tidal Wind Structure

    Get PDF
    Multiwavelength airglow image data depicting a short-period (∼4.9 min) atmospheric gravity wave characterized by a sharp leading front have been analyzed together with synoptic meteor radar wind data recorded simultaneously from Bear Lake Observatory, Utah (41.6°N, 111.6°W). The wind data suggest the presence of a semidiurnal tide with horizontal winds peaking at around 60 m/s along the SSE direction of motion (170° from north) of this short-period wave. It was found that the gravity wave was most probably ducted because of the Doppler shift imposed by this wind structure. A marked 180° phase shift was observed between the near-infrared OH and the OI (557.7 nm) emissions. Numerical simulation results for similar ducted waves excited by idealized model sources suggest that the phase shift between the wave-modulated airglow intensities may be explained simply by chemical processes rather than by wave dynamics. Phase velocities of simulated waves, however, appear higher than those of observed waves, suggesting the importance of tidal thermal structure in determining the Doppler-ducted wave characteristics

    Observation and Modeling of Gravity Wave Propagation through Reflection and Critical Layers above Andes Lidar Observatory at Cerro Pachón, Chile

    Get PDF
    A complex gravity wave event was observed from 04:30 to 08:10 UTC on 16 January 2015 by a narrow-band sodium lidar and an all-sky airglow imager located at Andes Lidar Observatory (ALO) in Cerro Pachón (30.25∘S, 70.73∘W), Chile. The gravity wave packet had a period of 18–35 min and a horizontal wavelength of about 40–50 km. Strong enhancements of the vertical wind perturbation, exceeding10 m s−1, were found at ∼90 km and ∼103 km, consistent with nearly evanescent wave behavior near a reflection layer. A reduction in vertical wavelength was found as the phase speed approached the background wind speed near ∼93 km. A distinct three-layered structure was observed in the lidar data due to refraction of the wave packet. A fully nonlinear model was used to simulate this event, which successfully reproduced the amplitudes and layered structure seen in observations. The model results provide dynamical insight, suggesting that a double reflection occurring at two separate heights caused the large vertical wind amplitudes, while the three-layered structure in the temperature perturbation was a result of relatively stable regions at those altitudes. The event provides a clear perspective on the filtering processes to which short-period, small-scale gravity waves are subject in mesosphere and lower thermosphere

    Analysis of Energy Transfer among Background Flow, Gravity Waves and Turbulence in the mesopause region in the process of Gravity Wave Breaking from a High-resolution Atmospheric Model

    Get PDF
    We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated. Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted into kinetic energy, most of which is converted into internal energy. The calculations for the transfer of kinetic energy among GWs, turbulence, and the BG in a selected region, as well as the contributions from various interactions (BG-GW, BG-turbulence, and GW-turbulence), are performed. At the point where the GW breaks, turbulence is generated. As the GW breaking process proceeds, the GWs lose energy to the background. At the start of the GW breaking, turbulence receives energy through interactions between GWs and turbulence, and between the BG and turbulence. Once the turbulence has accumulated enough energy, it begins to absorb energy from the background while losing energy to the GWs. The probabilities of instability are calculated during various stages of the GW-breaking process. The simulation suggests that the propagation of GWs results in instabilities, which are responsible for the GW breaking. As turbulence grows, it reduces convective instability

    Gravity Wave Ducting Observed in the Mesosphere Over Jicamarca, Peru

    Get PDF
    Short-period gravity waves are ubiquitous in the mesosphere, but the vertical structures of their perturbations are difficult to observe. The Jicamarca 50-MHz very high frequency radar allows observations of winds and turbulent scatter with high temporal and vertical resolution. We present a case of a quasi-monochromatic gravity wave with period 520 (±40) s that is likely ducted below a southward wind jet between 68 and 74 km. Above this layer of evanescence, a northward wind enables it to emerge into a more stable layer, where it is refracted to a short vertical wavelength of 2.2 (±0.2) km; data show evidence of weak nonlinearity, and possible overturning or partial reflection from higher altitudes, above the observable region, in the form of a standing wave structure in vertical velocity at approximately 75 km. Based on the dispersion relation, and with help of a two-dimensional model, we determine that most likely the wave is propagating northward and is being ducted below and tunneling through the regions of evanescence created by the wind flow and typical mesospheric thermal structure. This is the first time that such an event has been identified in the Jicamarca mesospheric echoes, and it is distinct from Kelvin-Helmholtz billows also commonly seen with this sensitive radar—instead apparently revealing tunneling of the gravity wave through ambient winds

    Secondary Gravity Waves Generated by Breaking Mountain Waves Over Europe

    Get PDF
    A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large-scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time-averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is ∼2× that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution
    corecore